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Integrals of motion and semi-regular Lepagean forms in 
higher-order mechanics 

Lubomir Klapka 
Faculty of Electrical Engineering, Technical University of Brno, Department of Physics, 
Kodvova 131,639 00 Brno, Czechoslovakia 

Received 26 January 1983 

Abstract. In this paper a relation between a canonical set of integrals of motion and the 
Lepagean (fundamental) differential form .9 in higher-order mechanics is studied. The 
canonical set of integrals of motion is introduced as a system of functions of coordinates, 
time and higher-order velocities of the given mechanical system, satisfying certain axioms 
of functional independence, completeness and canonical adjointness. It is shown that 
there exists a correspondence between canonical sets of integrals of motion and semi- 
regular Lepagean forms. A connection of invariance transformations of the form d.9 with 
integrals of motion is studied, and a generalisation of the local Liouville theorem on the 
integrals of motion in involution is given. 

1. Introduction 

There are a few approaches to the problem of a generalisation of the well known 
PoincarC-Cartan form (Goldschmidt and Sternberg 1973) to higher-order calculus of 
variations, all of them leading to the same result in higher-order mechanics. For 
instance Krupka (1973, 1982) introduced the concept of a Lepagean form, related to 
a certain ‘horizontalisation’ of forms, Aldaya and Azcarraga (1978, 1980) applied the 
Lagrange multipliers, and Shadwick (1982) adapted a procedure of working modulo 
the so-called contact forms. 

The purpose of this paper is to study the relation and the conditions of local 
equivalence between the motion laws and the conservation laws in higher-order 
mechanics. We introduce the canonical set of integrals of motion related to a Lepagean 
form; the basic tool applied is the Darboux theorem on the canonical form of an 
exterior two-form (see e.g. Sternberg 1964). The concept of an invariant transforma- 
tion of a Lepagean form is used analogously as in the first-order theory (see e.g. Sarlet 
and Cantrijn 1981). We derive a relation for the calculation of Lagrange functions 
from the canonical set of integrals of motion and we apply this relation to the inverse 
problem of the calculus of variations. Finally, we prove a generalisation of the classical 
Liouville theorem on the integrability of equations of motion (see e.g. Arnold 1979) 
in the local case to higher-order mechanics and we introduce explicit relations for the 
corresponding quadratures. 

For a kinematic description of a mechanical system we use a fibred manifold 
T :  W +I and its jet prolongations. The basis I is a one-dimensional time interval 
and W = I X X, where X is an n -dimensional configuration manifold of the mechanical 
system. The time evolution of the mechanical system then corresponds to a certain 
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section y of the fibred manifold r. Further on, we use the following notations: j'W 
is an r-jet prolongation of W, j ' y  is an r-jet prolongation of y, rr,o a natural projection 
of j'W to W, (V, $), $ = (t, q") a local coordinate system on W, (Vr,  +br), 4, = 
(t, qg, q:, q;, . , , , q : )  a local coordinate system on j'W associated with (V, 4). We 
also use for the coordinates q ;  the traditional notation 4 ;  =q", q7 =q", q z  =q",  
etc. For Greek indices we use everywhere the standard summation convention, and 
summation is always done within maximum limits. Further, we use the following 
differential-geometrical operations: d is the exterior derivative, is the contraction of 
a form by a vector field 5, the Lie derivative with respect to the vector field 5, h 
the horizontalisation of forms on j'W, d/dt the total derivative, f* the pull-back of 
a form by a mapping f, f *  the tangent mapping of a mapping f .  The manifold X and 
all mappings which are used in this paper are supposed to be infinitely differentiable. 

2. Lepagean forms 

Definition 1. We say that a one-form 8 on an open set U Cj'W is a Lepagean form 
if for each vector field 5 on U such that (rr,o)*[ = 0 it holds that 

The mapping h (horizontalisation) used in definition 1 is defined in (Krupka 1973, 
1982) as a mapping assigning to each k-form p on j'W a r,-horizontal k-form h ( p )  
on jr+' W such that j r y * p  = j " ' y * h ( p )  for each section y of r ;  h is linear over the 
ring of functions. In mechanics, where the base of T is one-dimensional, we have for 
any function F on j'W, h (dF)  = (dF/dt) dt. This relation is often used in practical 
calculations. 

Definition 2. Let e be a Lepagean form defined on an open set U cj'W. We say 
that a local section y of the fibred manifold T is a critical section with respect to 19 if 
it holds that: 

(i) the prolongation j ' y  of the section y lies in U ;  
(ii) for each vector field 5 on U 

j 'y*is  de  = 0. (2.2) 

Definition 2 expresses the physical meaning of the Lepagean form. Each Lepagean 
form 8 determines a certain dynamics of the mechanical system. Within the frame 
of this dynamics only motions of the mechanical system are possible which correspond 
to the critical sections of the fibred manifold r (with respect'to e). 

Definition 3. We say that the one-form 0 on an open set U Cj'W is semi-regular if 
there exists a positive integer s such that at each point of U 

rank(d0) = 2s. (2.3) 

A regular Lepagean form is a special case of a semi-regular Lepagean form. Such a 
case occurs if in definition 3, s = f n ( r +  1). In first-order mechanics, where r = 1, a 
Lepagean form is regular if and only if s = n. 
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3. A canonical set of the integrals of motion 

Definition 4. We say that the functions P1, P 2 , .  . . , P,, Q', Q2, . . . , Qs on an open 
set U c j'W form a canonical set @ of integrals of motion on U if: 

(i) the one-forms dP1, dP2, .  . . , dP,, dQ', dQ2, .  . . , dQs are linearly independent 
at every point of U ;  

(ii) for each vector field 5 on U such that (.rrr,0)*5 = 0 

iE[(dQ"/dt)dP, - (dP,/dt)dQ"] = 0. (3.1) 

The condition (ii) of definition 4 ensures that the integrals of the set @ are pairwise 
canonically associated ; however, it also guarantees a certain completeness of the set. 
As the summation in (3.1) ranges from 1 to s, a subset of @ or an extension will in 
general not form a canonical set. 

Similarly to the Lepagean form 8, the canonical set @ of integrals of motion also 
determines a certain dynamics of the mechanical system expressed by means of a 
critical section of the fibred manifold T. 

Definition 5. Let @ be the canonical set of integrals of motion Pa, Q" (a = 1 , 2 ,  . . . , s )  
on an open set U c j ' W .  We say that a local section y of a fibred manifold 7~ is a 
critical section with respect to @ i f :  

(i) the prolongation j ' y  of the section y lies in U ;  
(ii) for each a = 1 , 2 , .  . . , s 

j ' y *  dP, = 0, j ' y*  dQ" = 0. (3.2) 

Within the frame of the dynamics determined by the canonical set @ of integrals of 
motion, only motions of the mechanical system are possible which correspond to the 
critical sections y of the fibred manifold T. Equations (3.2) then represent the 
conservation laws of integrals of motion of the canonical set @, 

4. Equivalence of the Lepagean form and the canonical set of integrals of motion 

Definition 6. We say that the Lepagean form 8 on an open set U ' j ' W  and the 
canonical set @ of integrals of motion Pa, Q" (a = 1 , 2 , .  . . , s) on U are equivalent if 
the conditions (2.2) and (3.2) for critical sections y of the fibred manifold T are 
equivalent on a set U. 

Definition 6 is expressing, in other words, that C#I and 8 are equivalent if and only 
if conditions (2.2) and (3.2) have the same solutions y,  i.e. when @ and 8 determine 
the same dynamics of the mechanical system. The following theorem is concerned 
with the conditions of existence of a Lepagean form 8 and an equivalent canonical 
set @ of integrals of motion. 

Theorem 1. 
(i) For every semi-regular Lepagean form 8 on an open set U c j'W there exists 

an equivalent canonical set @ of integrals of motion on the neighbourhood of every 
point of the set U. 
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(ii) For every canonical set Q, of integrals of motion on an open set U c j'W there 
exists an equivalent semi-regular Lepagean form 8 on U. 

Proof. (i) The form d8 is a closed two-form on a (1  + n  +rn)-dimensional manifold 
U and it has, according to definition 3, a constant rank equal to 2s. The assumptions 
of the Darboux theorem are then satisfied (e.g. Sternberg 1964) and therefore it is 
possible in a neighbourhood of each point to introduce coordinates 

, P,, Q', Q', . . . , Q S , x 1 , x 2 , ,  . . 
on which there holds 

de  = dPa A dQ". (4.2) 

As for each vector field 

it holds on U that 

h ( i r  de)  = [ ( i r  dP,) dQ"/dt - ( i r  dQ") dP,ldt] dt (4.4) 

the conditions of definition 4 according to definition 1 are satisfied, so that the set @ 
formed by the coordinates P1, Pz,  . . . , P,, Q', Q2, .  . . , Q' is a canonical set of the 
integrals of motion. Since the vector field 5 is arbitrary, the relation 

j r y * i r  d8 = j 'y*( ta  dQ" -5" dP,) (4.5) 

implies that Q, and 8 are equivalent in the sense of definition 6. 

P1, Pz, . . . , P,, Q', Q2,. . . , Q' let us construct a one-form on U 
(ii) By means of the canonical set @ of integrals of motion 

6' = P, dQ" + d S  (4.6) 

where S is an arbitrary function on U. This form is a Lepagean form as is evident 
from (2.1), (3.1), (4.4). According to the relation 

dOAd0A . . .  ~ d e = s ! d P l ~ d Q ' ~ d P 2 ~ d Q ' ~  . . .  ~ d P , r \ d Q '  (4.7) 

where on the left-hand side there are s factors de, and according to (i) of definition 
4, the form (4.6) is also semi-regular in the sense of definition 3.  On a neighbourhood 
of each point of the set U we can introduce coordinates (4.1) and therefore here 0 
and 8 are, according to (2.2), (3.2), (4.5) equivalent in the sense of definition 6. In 
this case, however, and 8 are equivalent over the whole set U and the proof of 
theorem 1 is finished. 

It follows from the proof that the correspondence of Q, and 6' is not one-to-one. 
For a given canonical set Q, there can exist more equivalent Lepagean forms 6, which 
differ by the function S in (4.6). Analogously, for a fixed chosen Lepagean form 6' 
there can exist more equivalent canonical sets Q, of integrals of motion, because the 
transformation of the form d8 to the canonical form (4.2) is not unique. 
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5. The Lagrange function associated with the Lepagean form 

The relation between the Lepagean forms and the corresponding Lagrange functions 
is studied by Krupka (1982). The most important results and procedures of that paper 
are summarised for higher-order mechanics in the following assertion and its proof. 

Theorem 2. Let (V ,  $), $ = ( t ,  9") be a local coordinate system on W. Then to each 
Lepagean form 0 on Vr is assigned a Lagrange function L on V,+l  by the relation 

h (0)  = L dt. 

The Euler-Lagrange equations for critical sections y of the fibred manifold 7~ 

. r + l  * I Y & = 0 ,  

where 

are equivalent to the condition ( 2 . 2 ) .  

Proof. The Lepagean form 0 has in the coordinate system (V,, the form 

r 
O = M d t +  1 LLdqE. 

k = O  

Therefore 

h(0)  = ( M +  2 L&;+l) dt. 
k = O  

According to (5.1) it holds that 
r 

M = L -  1 LhE.1 
k = O  

so that 
r 

6' = L d t +  C Lt(dqE -qE+1 dt) .  
k = O  

As the form (5.4) is defined on V,, neither M nor L! can depend on qT+l. By 
differentiating (5.6) with respect to q:+l 

L: = aL/aq:+l. (5.8) 
Now, let us consider a vector field 

(5.9) 

The condition (7~,~).&=0 implies l = O ,  5:=0 and the other components can be 
arbitrary. In such a case we get 

(5.10) 
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and from here by means of definition 1 the recurrence relation 

L!-' = aL/aq;: -dL!/dt, (5.11) 

where k = 1 , 2 , .  . . , r. From the condition (5.8) by means of (5.11) it follows that 

r - k  
(5.12) 

Now, consider the case when the vector field (5.9) is quite an arbitrary one. From 
(5.3), (5.7) and (5.12) it follows that 

j r y * i 6  d6 =jr+ 'y*Eu( [g  - q " [ )  dt (5.13) 

from which the equivalence of (2.2) and (5.2) is apparent. This completes the proof. 

It is obvious that for each Lagrange function L on V,+l the Lepagean form can be 
found by means of (5.7), (5.12) 

d' aL r r - k  

0 = L d t +  1 1 (-1)17( -) (dqz - q i + l  dt) 
k = O r = o  dt aqz+i+1 

(5.14) 

which, however, need not be, in general, defined on V,. By more detailed consider- 
ations one can find the conditions which must be satisfied by the Lagrange function 
L on Vr+' so that the corresponding Lepagean form (5.14) might be defined on V,. 

Theorems 1 and 2 can be used to solve certain modifications of the inverse 
variational problem. If we know the integrals of motion PI, P2, . . . , P,, Q', Q2, . . . , Q' 
of some canonical set @, we can determine the corresponding Lagrange function by 
means of (4.6), (5.1) 

(5.15) 

associated with the Lepagean form 6 equivalent to @. The arbitrary function S here 
has the meaning of the corresponding action of the mechanical system, calculated 
along a critical section. The inverse problem to determine a canonical set of integrals 
of motion from a Lagrange function L is a special case of the well known problem 
of finding a normal form (4.2) of an arbitrary closed two-form of constant rank, In 
8 0  6 and 7, we apply the general theory of the normal form to constructing a canonical 
set of integrals of motion. 

L = Pa dQ"/dt + dS/dt 

6. Invariant transformations 

Invariant transformations of the form dB are used in first-order mechanics to search 
for integrals of motion. It is shown in the following theorem that the invariant 
transformations can be analogously used even in higher-order mechanics and at the 
same time it joins them to the whole canonical set of integrals of motion. 

Theorem 3. Let U c j'W be an open set, dim U = 1 + n + rn, 6 a semi-regular Lepagean 
form on U, @ a canonical set of integrals of motion Pa, Q" (a = 1,2 ,  . . . , s)  on U and 
equivalent to 6. Then the following hold. 
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(i) To each vector field 5 on U, generating a one-parameter group of invariant 
transformations of the form d6, there is assigned locally a function F of the elements 
of the canonical set of integrals of motion Pa, Q", by the relation 

is de = dF. (6.1) 
The function F is determined explicitly up to an arbitrary additive constant. 

(ii) To each function F of the elements Pa, Q" of the canonical set @ of integrals 
of motion on U there is by relation (6.1) locally assigned a generator 5 of a one- 
parameter group of invariant transformations of the form de. The vector field 6 is 
determined explicitly up to an arbitrary additive vector field 7, which belongs to the 
(1 + n + rn - 2s)-dimensional distribution of the solutions of the equation 

i, dB = 0. (6.2) 
Proof. 

the form de, it holds that 
(i) As is a generator of a one-parameter group of invariant transformations of 

8, d6 = 0. (6.3) 

a, de =dit de, (6.4) 

Since 

according to the PoincarC lemma there exists, locally, a function F so that (6.1) holds. 
The function F is determined up to an arbitrary additive constant. In the coordinate 
system (4.1) let the vector field 5 be expressed by 

e=e,a/ap, +("a/aQ" + q y a / a x y .  (6.5) 

According to (4.2) and (6.1) it holds that 

From here 

dF/axy = o (6.7) 
so that the function F depends on the variables Pa, Q" of the canonical set @ only. 

coordinate system (4.1) 
(ii) For each function F of variables Pa, Q" it follows from (6.6) that in the 

ea = aF/aQ", 5" = -aF/aP,, (6.8) 

so that according to (6.5) and (6.8), the vector field 

dF a aF a a 
aQ" aP, aP, aQ" 5 = - - - - -  + v Y p  

with arbitrary components 77 ', is a solution of (6.1) and so according to (6.3) and (6.4) 
it generates a one-parameter group of invariant transformations of the form de. 
Thereby, according to (4.2), the vector field 

77 = 7 y a / a x y  

is a general solution of (6.2). 
(6.10) 
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7. The Liouville theorem 

It is not always possible to determine all 2s integrals of motion of the canonical set 
@ just by means of invariant transformations of the form d0 alone. In the regular 
case of first-order mechanics it is, however, sufficient according to the classical Liouville 
theorem to determine s integrals in involution and the remaining integrals can then 
be determined by means of quadratures. The following definition and theorem 
generalise this process in the local case even to higher-order mechanics. 

Definition 7. We say that the functions PI, P 2 , .  . . , P, on an open set U c j'W are 
independent integrals of motion in involution with respect to the Lepagean form 0 on 
U, if it holds that: 

(i) one-forms dP1, dP2, . . . , dP, are at each point of the set U linearly independent; 
(ii) there exist vector fields tl, t 2 , .  . . , 5, on U such that for all a, p = 1, 2, . . . , s 

i,- d0 = dP,, 

i, dPP = 0. 

Theorem 4. Let PI, P 2 , .  . . , P, be independent integrals of motion on an open set 
U c j ' W ,  which are in involution with respect to the semi-regular Lepagean form 0 
on U such that rank(d0) = 2s. Then in the neighbourhood of each point of the set U 
there exist functions Q', Q 2 , .  . . , Qs which, together with integrals P1, Pz,  . . . , P,, 
form a canonical set of integrals of motion, equivalent to the Lepagean form 0. 

Proof. Let us consider a point X ~ E  U. According to (i) of definition 7 it is possible 
to choose coordinates in a neighbourhood of the point x o  

(7.3) 

As the integrals Pa are according to (i) of theorem 3 determined up to additive 
constants, we can suppose without loss of generality that all coordinates (7.3) of the 
point x o  E U are zero. 

The coordinate expression of the solution 6- of (7.1) cannot contain a/aPP according 
to (7.2), and therefore it holds that 

1 2  l + n  c r n - s  PI, P2,. . . , P,, x , x , . . * , x 

ta = g a l a x y .  (7.4) 

The coordinate expression of the form de is 

dO=aaPdP ,  ~ d P ~ + b ~ d P ~ ~ d x ~ + c , ~ d x ~ ~ d x ~  (7.5) 

in which we suppose a R P  + aPu = 0 ,  cys +csv = 0. Let us consider now a linear system 
of equations 

(7.6) 

for 1 + n  + r n  -s unknown 5'. According to (7.1),  (7.5) the components 6: of each 
vector field (7.4), where a = 1 , 2 , .  . . , s, are the solutions of the system (7.6). By (ii) 
of theorem 3 the vector fields (7.4) are determined up to an arbitrary vector field 77, 
which belongs to a certain (1 + n + m - 2s)-dimensional distribution. Thus the system 
(7.6) has s + (1 + n + m - 2s) = 1 + n + m --s independent solutions. As the number of 

c,sLY = 0 
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unknowns is equal to the number of independent solutions, the rank of the system 
(7.6) must be zero, i.e. 

cy6 = 0. (7.7) 
Since the form (7.5) is closed, for the remaining coefficients it holds that 

(7.8) 

(7.9) 
(7.10) 

Now let us consider an open ball B c U with its centre at the point x o .  Then there 
exist two mappings cp : [0, 11 x B + B and ,y : [0, 11 x B + B defined by the relations 

) = ( T P ~ , T P ~ ,  . . . , ~ P , , 0 , 0 , .  . . , O ) ,  (7.11) 1 + n  + m --s 
cp(T, PI, P2 , .  . . , P,, x 1 , x 2 , .  . . , x 

X ( T ,  P1,P2, .  . . , P s , x ' , x 2 , .  . * , x  ). 1 + n  +m --s 1 2  1 + n + rn --s ) = (PI, P2, . . . , P,, TX , TX , 1 . . , TX 

(7.12) 
On the open ball B we then introduce the functions Q" by the quadratures 

1 

Q" = J (2rPBq*aaP + x Y x * b ; )  dr. 
0 

Then by (7.10), (7.11) and (7.12) we obtain 

aQ"/ax' = b;.  

(7.13) 

(7.14) 

Similarly, according to (7.8), (7.9), (7.11), (7.12) and (7.13j 

$(aQ"/aP, - aQP/aP,) = a "'. (7.15) 

As (4.2) follows from (7.51, (7.7), (7.14) and (7.15), condition (i) of definition 4 is 
satisfied according to (4.7) and definition 3. By (4.4) and definition 1 the condition 
(ii) of definition 4 is also satisfied, so that the set CP of functions Pa, Q" (a = 1 ,2 ,  . . . , s)  
is a canonical set of integrals of motion. The equivalence of CP and 8 by definition 6 
is apparent from the relation (4.5). This completes the proof of theorem 4. 

8. Examples 

8.1. Example of the canonical set associated with a given Lagrange function 

Let W = R x R and let a Lagrange function be given by the relation 

L =i (42- ( i2) .  (8.1) 

8 = ( iq2-w 1 . 2  

According to (5.14) it holds that 

-cjq) d t  + ( c j  + q )  dq - 4  dq, (8.2) 
so that 8 is defined on j 3  W.  

The simplest invariant transformations of the form 

d8 = d(iq2 - $j - cjq) A dt + d(cj + q )  A dq + dcj A dq (8.3) 

are translations in the variables t and q. 
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According to theorem 3 it follows that the expressions in the brackets are functions 
of the elements of the canonical set of integrals of motion. For simplicity, we choose 

(8.4) 

Moreover, we choose the set U c j 3  W so that condition (i) of definition 7 might be 
satisfied. As it holds that 

dP1 A dP2 =q(dq A dq + d q  A dq) + q  dq A d q  (8 .5 )  

the set U can be defined by one of the relations q > 0, q < 0 ,  q > 0 ,  q < 0. In what 
follows, we shall consider only the open set U c j’ W, defined by the relation 

q > o  (8.6) 

(if we chose another of the four possibilities, we would come to another canonical set 
of integrals of motion on another open subset j 3  W). Since on U there are vector fields 

(8.7) 

satisfying equations (7.1), (7.2), condition (ii) of definition 7 is also satisfied, and the 
functions (8.4) are two independent integrals of motion in involution with respect to 
the Lepagean form (8.2) on the set (8.6). 

As rank(d0) = 4, all the conditions of theorem 4 are satisfied according to definition 
3, so that we can find the remaining integrals of the canonical set by means of 
quadratures. For that reason we exclude the coordinates q and q from (8.3) and 
(8.4). Thus we obtain 

(8.8) 

t1 = - a/aq, t2 = - a/at  - (q + q)a/aq, 

de = dP1 A dq + dP1 A dq -PI dP1 A dt + dP2 A dt - (2P2 - q2)-”’ dPz A dq 

and according to (7.5), (7.12), (7.13), 
1 

0’ = (q +g- Plr) d7 = q  +q - Plt, 
0 

From (8.4) and (8.9) it follows that the canonical set of integrals of motion on the set 
(8.6), equivalent to the Lepagean form (8.2), is formed by the functions 

P1 = q  + q ,  

Q’ = q + q  - (q + q ) t ,  

P 2 - 2 9  - 1 * * 2  +19 1.-2 , 

Q 2  = t - tan-’(q/q). 
(8.10) 

We note that higher-order mechanical systems correspond generally within the frame 
of the Newton approach, to systems with the ‘hidden motions’. In our case the 
Lagrange function (8.1) determines the one-dimensional motion of a ‘black box’ in 
which the harmonic oscillator is hidden. A system of units is chosen in such a way 
that the angular frequency of oscillations is unity. The physical meaning of the integrals 
of motion P1, P2, Q’, Q2 is as follows: the momentum of the centre of mass, the 
energy of oscillations, the starting position of the centre of mass and the starting phase 
of oscillations. 
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8.2. Example of the Lagrange function, associated with given integrals of motion 

The question we discuss in this section by means of the canonical set of integrals of 
motion has been already solved, in a different way, by Darboux (1894). We set 
W = R x R and consider the equation of motion of the system in the form 

i2y*(4 -f(q, 4, t)) = 0 ,  (8.11) 

where f(q, q, t )  is a given function and y is a critical section of the fibred manifold 
7. In such a case every function F on j '  W satisfying the condition 

(8.12) 

is an integral of motion. This equation can be rewritten by means of the total derivative 
in the form 

dF/dt = (aF/aq)(d - f ) .  (8.13) 

Consider, now, any two integrals of motion P, Q on an open set U c j '  W such that 
at each point of the set U it holds that 

(8.14) 

Then for s = 1 condition (i) of definition 4 is satisfied. As for as condition (ii) of 
definition 4 is concerned it can be transformed to the equivalent form 

(8.15) 

in which it is, by (8.13), satisfied as well. In our case any two independent integrals 
of motion form a canonical set @ of the integrals of motion. 

The sought after Lagrange function is then, according to (5.15), given by the relation 

(8.16) 

where S is an arbitrary function on j '  W. To find out that the corresponding Euler- 
Lagrange equations (5.2) are equivalent to (8.11) we shall rewrite the expression (5.3) 
by means of (8.16) in the form 

aF/at + (aF/aq)q + (aF/aq)f = o 

(aP/aq)aQ/aq - (aP/aq)aQ/aq z 0. 

(aP/aq)dQ/dt - (dQ/aq)dP/dt = 0, 

L = P dQ/dt + dS/dt 

dPdQ aQdP) f d (aQ d P  a P d Q  
'=(aq  dt aq dt dt aq dt aq dt 

By using (8.13) for the total derivatives we get the relation 

E = [(w/aq)aQ/'aq - (aP/aq)aQ/aciI(f-ii) 

from which, by (8.14), the equivalence is apparent. 

(8.17) 

(8.18) 
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